
829

Analyzing the tradeoffs between breakup and cloning in
the context of organizational self-design

Sachin Kamboj
∗

Department of Computer and Information Sciences
University of Delaware

Newark, DE 19716
kamboj@cis.udel.edu

ABSTRACT

Organizational Self-Design (OSD) has been proposed as an ap-
proach to constructing suitable organizations at runtime in which
the agents are responsible for constructing their own organizational
structures. OSD has also been shown to be especially suited for
environments that are dynamic and semi-dynamic.

Most existing OSD approaches work by changing the organiza-
tional structure in response to changes in the environment — usu-
ally by spawning a new agent when an agent is overloaded and
composing agents when they are free. One approach to spawning
involves "breaking" up a problem into smaller sub-problems and
assigning one of the sub-problems to the newly spawned agent. An
alternative approach works by "cloning" the source agent and as-
signing the clone agent a portion of the source’s work load. We
posit that both of these approaches are complementary, have their
own advantages, and can be used together. In this paper we analyze
the tradeoffs between cloning and breakup and generate a hybrid
model that uses both cloning and breakup to generate more suit-
able organizations than those that could be generated when using a
single approach.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms

Algorithms, Design, Performance, Experimentation

Keywords

Organizational-Self Design, Task and Resource Allocation

1. INTRODUCTION
The organization of a multiagent system is concerned with issues

such as the number of agents needed to solve a problem, the alloca-
tion of tasks and resources amongst the agents and the coordination
of inter-agent activities. These issues can be addressed by selecting
an organizational structure, consisting of roles and relationships,
and then instantiating agents for that structure.

∗Author is a student

Cite as: Analyzing the tradeoffs between breakup and cloning in the con-
text of organizational self-design, Sachin Kamboj, Proc. of 8th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Bu-
dapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Contingency theory tells us that there is no best way to organize
and all ways of organizing are not equally effective. Instead, the op-
timal organizational structure depends on the problem being solved
and the environmental conditions (problem arrival rate, deadlines,
etc) under which the problem is being solved.

If the environment is dynamic or semi-dynamic, it precludes the
use of a static, design-time generated organizational-structure. Or-
ganizational self-design (OSD), in which the agents are responsi-
ble for designing their own organizational structures at run-time,
has been proposed as a mechanism for designing organizations for
such environments. OSD is particularly suited to the problem of
generating virtual organizations for grid/volunteer/cloud comput-
ing environments.

In our model, problem solving requests (tasks) arrive at the mul-
tiagent system at indeterminate times. The multiagent system is re-
sponsible for finding solutions to these requests by their deadlines.
The multiagent system starts off with a single agent responsible for
solving the problem in its entirety. As in [8], if the agent is over-
loaded (i.e. it can’t complete the problems in its task queue before
their respective deadlines), it spawns off a new agent to handle part
of its load. While spawning off a new agent, the overloaded agent
has two options:

1. It could divide the problem into smaller subproblems and as-
sign one of the smaller problems to the newly spawned agent.
We will refer to this approach as breakup.

2. It could assign half of the outstanding problems in its task
queue to the newly spawned agent. The individual prob-
lems are solved in their entirety by the two agents. In this
approach, the spawning agent has effectively cloned itself.
Hence, we refer to this approach as cloning.

Each of these two approaches have their own advantages and
disadvantages: (1) Breakup may be the only option if the task is
too “big” for any single agent to do on its own. Similarly cloning
may be the only option if task cannot be broken up into smaller
parts. (2) Breakup will typically use less resources than cloning,
especially if the subtasks use a different set of resources. (3) Also,
breakup would be better in situations in which the agents include a
learning component, since the number of instances over which the
information is being learned would be larger. (4) If, however, the
subtasks are interdependent breakup would require more coordina-
tion between the agents executing the interdependent parts. Hence,
cloning would be better in such situations.

We use TÆMS as the underlying representation for our problem
solving requests. TÆMS [9] (Task Analysis, Environment Mod-
eling and Simulation) is a computational framework for represent-
ing and reasoning about complex task environments in which tasks

Cite as: Analyzing the Tradeoffs Between Breakup and Cloning in the
Context of Organizational Self-Design, Sachin Kamboj, Proc. of 8th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009,
Budapest, Hungary, pp. 829–836
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

830

(problems) are represented using extended hierarchical task struc-
tures. The root node of the task structure represents the high-level
goal that the agent is trying to achieve. The sub-nodes of a node
represent the subtasks and methods that make up the high-level
task. The leaf nodes are at the lowest level of abstraction and rep-
resent executable methods – the primitive actions that the agents
can perform. The executable methods, themselves, may have mul-
tiple outcomes, with different probabilities and different character-
istics such as quality, cost and duration. TÆMS also allows vari-
ous mechanisms for specifying subtask variations and alternatives,
i.e. each node in TÆMS is labeled with a characteristic accumula-
tion function that describes how many or which subgoals or sets of
subgoals need to be achieved in order to achieve a particular higher-
level goal. TÆMS has been used to model many different problem-
solving environments including distributed sensor networks, infor-
mation gathering, hospital scheduling, EMS, and military planning
[1, 10].

The main contributions of this paper are as follows:

1. We perform an analysis of the tradeoffs between breakup and
cloning in worth-oriented domains.

2. We describe five different strategies for selecting between
breakup and cloning when spawning an agent. One of these
strategies involves developing a hybrid model that tries to
combine the benefits of both of these approaches.

3. We introduce an approach to OSD that uses task structure
rewriting to represent and reason over organizational struc-
tures.

The structure of the rest of this paper is as follows: In the next
section we describe some related work. Then, in Sections 3 and
4, we give a formal problem definition and describe our approach
to OSD. We then describe our analytic model in Section 4.3 and
present some experimental results in Section 5. Finally, we con-
clude in Section 6.

2. RELATED WORK
The tradeoffs between breakup and cloning have been studied

extensively in the management sciences (see, for example, [11]),
where this tradeoff is presented in terms of the difference between
specialization and generalization. However, almost all of these
studies have focused on human organizations and cannot directly
be applied to virtual organizations in grid/cloud/volunteer comput-
ing environments. [5] and other researchers introduced these con-
cepts to the distributed AI literature, though they did not offer any
analysis of the tradeoff.

This paper primarily depends on and attempts to unify two dis-
tinct lines of research:

1. The research on Cloning performed by Shehory, Sycara et.
al. [13, 2]. This research was responsible for introducing the
concept of cloning as a mechanism for load balancing — if
an agent detects that it is overloaded and that there are spare
(unused) resources in the system, the agent clones itself and
gives its clone some part of its task load.

2. The work on OSD by [6]which introduced decomposition
(spawning) and composition as a way of performing adaptive
work allocation and load balancing. [8] extended their work
to worth oriented domains.

These two approaches are different in that there is no specialization
of the agents in the former – the cloned agents are perfect replicas

of the original agents and fulfill the same roles and responsibili-
ties as the original agents. The latter approach, on the other hand
always specializes and does not consider the situations in which
simple cloning might be better. In this paper we attempt to study
this tradeoff.

There are numerous other approaches to both task allocation ([4,
14] and others), in general, and OSD ([15, 7, 12, 16, 3]), in particu-
lar. The market-based task allocation mechanisms [4, 14] implicitly
result in agent specialization in most cases, even though the trade-
offs are not explicitly reasoned over. Both [15, 16] are concerned
with hierarchical organizations which, by definition, have at least
some degree of specialization between the layers of the hierarchy.
However, the siblings may either fulfill the same roles or fulfill dif-
ferent roles depending on the organization of the hierarchy. These
decisions are implicit in the design of the hierarchies and are not
explicitly reasoned over in these papers.

Finally, some OSD papers are more concerned with changing (a)
the interaction patterns between the agents [7]; and (b) changing the
autonomy and decision making authority of the agents [12]. These
areas of research are only orthogonally related to ours.

3. TASK AND RESOURCE MODEL
Our task and resource model is based on the one presented in

[8, 1] and is summarized here for formal grounding. The primary
input to the multi-agent system is an ordered set of problem solv-
ing requests or task instances, < P1, P2, P3, ..., Pn >, where each
problem solving request, Pi =< ti,ai,di >. Here, ti is the un-
derlying TÆMS task structure, ai ∈ N+ is the arrival time and
di ∈ N+ is the deadline of the ith task instance.

Furthermore, every underlying task structure, ti, can be repre-
sented using the tuple < T, τ, M, Q, E, R, ρ, C >, where:

• T = {t1, t2, ..., tn} is the set of tasks, the non-leaf nodes of
a TÆMS task structure. Tasks denote goals that the agents
must achieve and are represented using the pair ti = (qi, si),
where qi ∈ Q is the quality/characteristic accumulation
function (QAF) (see below); and si ⊂ (T ∪ M) is a set
of subtasks and or methods of T.

• τ ∈ T , is the root of the task structure, that is, the highest
level goal that the organization is trying to achieve.

• M = {m1, m2, ..., mn}, is the set executable methods,
i.e. the primitive methods that can be directly executed by
an agent. Each method, mk, is represented using the out-
come distribution, {(o1, p1), (o2, p2), ..., (om, pm)}; where
ol is an outcome and pl is the probability that executing
mk will result in the outcome ol. Furthermore, ol =
(ql, cl, dl), where ql is the quality distribution, cl is the
cost distribution and dl is the duration distribution of out-
come ol. Each discrete distribution is itself a set of pairs,
{(n1, p1), (n2, p2), ..., (nn, pn)}, where pi ∈ �+ is the
probability that the outcome will have a quality/cost/duration
of nl ∈ N depending on the type of distribution andPm

i=1 pl = 1.

• Q = { MIN, MAX, SUM, EXACTLY_ONE, ...} is the set of
quality/characteristic accumulation functions (CAFs). The
quality accumulation function determines how the quality of
a task is computed from the quality of its subtasks. See [1]
for formal definitions.

• E is the set of (non-local) effects, i.e. E = {e1, e2, ..., en},
where each effect, ei =< α, β, δ >. Here, α ∈ (T ∪ M), is

Sachin Kamboj • Analyzing the Tradeoff s Between Breakup and Cloning in the Context of Organizational Self-Design

831

the source of the non-local effect, β ∈ M , is the sink method
of the non-local effect and δ, is a temporal function that com-
putes the characteristics of the sink given the characteristics
of the source. Again, see [1] for formal definitions.

• R is the set of resources.

• ρ is a mapping from an executable method and resource to
the quantity of that resource needed (by an agent) to sched-
ule/execute that method. That is ρ(method, resource) :
M × R → N .

• C is a mapping from a resource to the cost of that resource,
that is C(resource) : R → N+

4. ORGANIZATIONAL SELF DESIGN
Most approaches to OSD, including ours, consist of two primary

components: (1) An evaluation component that is responsible for
monitoring the performance of the organization according to some
utility function; and (2) an adaptation component that is triggered
by the evaluation component when the utility falls below a thresh-
old. The adaptation component is responsible for modifying some
aspect of the organizational structure so as to increase the perfor-
mance of the organization. These two components form a feedback
system and result in the dynamics of the organization.

In our approach to OSD, both these components are present in
each agent and any agent can change the organization at run time
(hence, the term self-design). In the next section, we will describe
the evaluation component and in the following section we will dis-
cuss the adaptation component.

4.1 Detecting the need for organizational
change

The primary trigger for change in our system is a change in the
task load of an agent, usually as a result of some change in the
environment. For example, the task arrival rate may change, the
deadlines on the arriving tasks might change or the available re-
sources might change.

If an agent cannot perform the tasks in its task queue by their
deadlines, the agent is said to be overloaded. The agent responds
to this situation by spawning off a new agent to handle part of its
task load. If, on the other hand, the agent is idle for an extended
period of time, it can find another idle agent and try to compose
with it.

4.2 Organizational Structure
In our approach, organizations are represented using an organi-

zational structure that is primarily composed of roles and the re-
lationships between the roles. One or more agents may enact a
particular role and one or more roles must be enacted by any agent.
The roles may be thought of as the parts played by the agents enact-
ing the roles in the solution to the problem and reflect the long-term
commitments made by the agents in question to a certain course of
action (that includes task responsibility, authority, and mechanisms
for coordination). The relationships between the roles are the coor-
dination relationships that exist between the subparts of a problem.

Also note that the organizational design is directly contingent
on the task structure of the problems being solved (the global task
structure) and the environmental conditions under which the prob-
lems need to be solved. Here, the environmental conditions refer
to such attributes as the task arrival rate, the task deadlines and the
available resources.

To form or adapt their organizational structure, the agents use
two organizational primitives: agent spawning and composition.

Agent spawning is the generation of a new agent to handle a subset
of the roles of the spawning agent. Agent composition, on the other
hand, is orthogonal to agent spawning and involves the merging of
two or more agents together — the combined agent is responsible
for enacting all the roles of the agents being merged.

In order to participate in the organization, and to apply these
primitives, the agents need to explicitly represent and reason
about the role assignments and must maintain some organizational
knowledge. This knowledge is represented in each agent using a
TÆMS task structures, called the local task structure. Hence, we
define a role as a local task structure. These local task structures are
obtained by rewriting the global task structure and represent the lo-
cal task view of the agent vis-a-vis its role in the organization and
its relationship to other agents. Hence, all reorganization involves
rewriting of the global task structure. However, note that the global
task structure is NOT stored in any one agent, i.e. no single agent
has a global view of the complete organization.

To allow the agents to store information about other agents in
the task structure, we augment the basic TÆMS task represen-
tation language presented above by adding organizational nodes
(O). Like TÆMS nodes, organizational nodes come in two fla-
vors (i.e. O = (TO ∪ MO): (a) organizational tasks, (TO), which
are used to aggregate other organizational nodes; and (b) organi-
zational methods, (MO), that are used to represent either organi-
zational knowledge or organizational actions that have some fixed
semantics. To differentiate organizational nodes from “regular"
TÆMS nodes (i.e. nodes that are in T ∪ M), we will refer to non-
organizational nodes as domain nodes (denoted as D). We define
the following organizational nodes:

1. Container-Nodes: Σ ⊆ TO1, are aggregates of domain
nodes and other organizational nodes. Formally, Σ =
{σ1, σ2, ..., σn}, where each σi =< ti, si >. In this con-
text ti ∈ {ROOT, CLONE, COORDINATION} is the type of
the container and determines its purpose; and si ⊂ (D ∪O)
is the set of subtasks/nodes in that container.

2. Non-Local-Nodes: ♦ ⊂ MO , are used to represent a domain
node in some other agent’s local task structure. Non-Local-
Nodes are used to represent nodes in the global task structure
that the agent knows the identity (label) of but does not know
the characteristics (e.g. quality, cost duration) of2. Formally,
♦ = {�1, �2, ..., �n}; each �i can be represented using a set
consisting of a single element, η ∈ {LABEL(d) | d ∈ D} that
encapsulates the identity of an existing domain node.

3. Clone Selectors: SC ⊂ MO are used to select amongst the
clones of a node. The purpose of a selector node within a
clone-container is to enable one or more of the clones, so that
the enabled nodes can be “executed" by the agents owning
those clones.

4. NLE-Inheritors: N ⊂ MO , are methods whose sole purpose
is to transfer the non-local effect from a non-cloned node to
a cloned node or vice versa. See Section 4.2 for the rationale
behind these node.

To allow for a change in an agent’s organizational knowledge, we
define three rewriting operators on a local task structure, which are
1Currently, Σ = TO , that is, the only type of organizational tasks
that have been defined are container nodes. However, we might
need to add other organizational tasks in the future.
2At least initially at the time of breakup. It can however learn these
characteristics through some coordination mechanism

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

832

A

B C D

E F G H I J K

Root-1

E F G H I

D

J

A

B C

Root-1
D

J K

I

Root-2

I A

B C

D1

E F G H I

J1 K1

Root-1

D2

J2 K2

S(C)

I(J-I)

C(D)

Figure 1: Figure demonstrating the use of task rewriting to breakup and clone a node. The leftmost figure shows a TÆMS task structure.
In the middle figure, Root 1 has been broken at Node D. Note the diamonds J and D in Root 1, which represent non-local nodes in Root 1
corresponding to local nodes in Root 2. Similarly, diamond I represents a non-local node in Root 2. In the rightmost figure, Node C has been
cloned once. Note the clone container node, C(D), the selector node S(C) and the inherited-method, I(J − I).

described below. However, before any of these rewriting operators
can be applied, we need to create an aggregator node (σ), called a
root node for storing “extra" organizational nodes that are created
by the rewriting operations and that can not be affixed to any other
part of the task structure. Recall, that we start off with a single
agent whose local task view is equivalent to the global task view, t.
Hence, the created root node will be σ1 =< ROOT, {t} >.

Breakup: The rationale behind the breakup operator is to divide
the workload of an agent so that parts of it can be assigned
to a new agent during the spawning process. If the work-
load of an agent consisted only of executable methods (M),
this would be a simple case of picking some subset of M
for the spawned agent. However, in our problem domain,
methods are (recursively) aggregated into tasks using CAFs
and may have interrelationships (NLEs) with other tasks and
methods. Hence, executable methods cannot be executed in
isolation without considering all the interdependent effects
of that execution.

Hence, when a spawning agent divides a local task structure,
A into two subparts B (for itself) and C (for the spawned
agent), it still needs to maintain some knowledge about the
tasks/methods in C while, at the same time, allowing the
spawned agent to have as much autonomy as possible over
the execution of C. Specifically the agent will need to know
about the subset of nodes in C that are interrelated to the
nodes in B, either through NLEs or through subtask rela-
tions. We will call this subset the related set, of B. Simi-
larly, the spawned agent will need to know some information
about the nodes in B that are interrelated to the nodes in C
through NLEs (i.e. the related set of C).

Furthermore, to allow for the maximum autonomy of both
the spawning agent and the spawned agent, we limit this
knowledge to consist of (1) the identity (label) of the nodes
in the related set and (2) the relationship (i.e. subtask or
NLE) through which they are related. Once the agent has
been spawned, the two agents can negotiate a coordination

mechanism for the relationship.

Algorithm 1 BREAKUP (τ ∈ Σ, υ ∈ D)

1: τ ⇐ DESCENDENTS(τ) − DESCENDENTS(υ)
2: υ ⇐ DESCENDENTS(υ)
3: for all { N | N ∈ NLES(τ) } do

4: if (SOURCE(N) ∈ τ and SINK(N) ∈ υ) or (SOURCE(N) ∈ υ
and SINK(N) ∈ τ) then

5: x ⇐ GETNONLOCALNODE(SOURCE(N))
6: y ⇐ GETNONLOCALNODE(SINK(N))
7: M ⇐ COPYNLE(N)
8: REPLACENODE(N , SOURCE(N), x)
9: REPLACENODE(M , SINK(N), y)

10: x ⇐ GETNONLOCALNODE(υ)
11: REPLACENODE(τ, υ, x)
12: return CREATEROOTNODE(υ)

This knowledge will be preserved by creating non-local
nodes (� ’s) to replace the nodes in the related set. During
the breakup rewriting operation, the NLEs will be altered
to point to/from the non-local nodes instead of the the do-
main nodes in the related sets. These non-local-nodes will
be added to the root-node. This process is illustrated in Fig-
ure 1 and the algorithm for the breakup operator is shown in
Algorithm 1.

Merging: The idea behind the merging operator is to allow two
agents to be composed into a single agent. Hence, merging
involves combining two different local task structures from
two different agents to form one local task structure.

Two requirements for the merging operation are (a) merging
should be the exact inverse of breakup, i.e. if A is a task
structure that was broken into B and C, merging B and C
should give A; and (b) merging should be associative, i.e.
the resultant local task structure formed after merging should
not depend on the order in which the constituent local task
structures were combined. Stated in another way, if using n

Sachin Kamboj • Analyzing the Tradeoff s Between Breakup and Cloning in the Context of Organizational Self-Design

833

breakup operations on a root node, σ, generates n local task
structures ({σ1, σ2, ..., σn}), then n merging operations on
these task structures, in any order, should regenerate σ

Algorithm 2 MERGE (τ ∈ Σ, υ ∈ Σ)

1: Let υ =< ROOT, sυ >
2: for all { y | y ∈ DESCENDENTS(sυ) } do

3: x ⇐ FINDNODE(τ ,LABEL(y))
4: if NULL(x) then

5: DELETENODE(υ, y)
6: if y ∈ sυ then

7: ADDNODE(τ, y)
8: else if (x ∈ ♦) ∧ (y ∈ ♦) then

9: MERGENODES(τ, x, y)
10: else if x ∈ D ∧ y ∈ ♦ then

11: DELETENODE(υ, y)
12: else if x ∈ ♦ ∧ y ∈ D then

13: REPLACENODE(τ, x, y)
14: return τ

The algorithm for the merge operator is shown in Algo-
rithm 2. In order to fulfill these requirements, firstly, the
domain nodes in the two local task structures, σ1, σ2, have
to be merged to form the same graph structure as in the
global task structure. This is done in lines 3–7 of the algo-
rithm. Furthermore, any non local nodes that might exist in
DESCENDENTS(σ1) that have corresponding domain nodes in
σ2 have to be eliminated and vice versa. This is done in lines
10–13 of the algorithm. Finally, any two non local nodes that
have the same identity should be merged into a single non-
local node (lines 8–9) or formally ∃�1, ∃ �2 | (�1 =< η1 >
∧�2 =< η2 > ∧η1 = η2) ⇒ �1 = �2

Cloning: To allow for situations in which (a) breakup might be
infeasible and/or (b) the agent would prefer to do simple load
balancing instead of breaking up the task structure, we intro-
duce a cloning operator that is responsible for making two
copies, < c1, c2 > of a substructure, υ ∈ D3 so that the
root task, τ can be broken up at node, υ, and the breakaway
part, c2, be allocated to a new agent. Hence, the cloning
operator is always meant to be used in association with the
breakup operator and the breakup operation should come af-
ter the cloning operation.

An example of the cloning operator is shown in the rightmost
image in Figure 1 and the algorithm is described in Algo-
rithm 3. To clone a node, υ in a root task, τ , we first create
a new container node, σc =< CLONE, {υ} >, called a
clone container and replace υ in τ with σc. The clone con-
tainer will be used to “hold" all the created clones.

Next we need some mechanism to select amongst the clones,
that is, when a new task instance arrives, we have to pick one
of the clones (and by inference, one of the owning agents)
to run that instance. To do this we need to create a clone
selector sc ∈ Sc method and add enables NLEs from sc to
both c1 and c2. Then method sc has to be executed before
any of the clones can be run and it can selectively enable one
or more of the clones.

Finally, there might be some NLEs in the clones c1 and c2

that have a source or destination as a non-clone node. (For-
mally, {e ∈ E | [SOURCE(e) ∈DESCENDANTS(c1) ∧ SINK(e)

3Note that we allow both tasks and methods to be cloned

∈ (DESCENDANTS(σ) − DESCENDANTS(c1))] ∨ [SINK(e)
∈DESCENDANTS(c1) ∧ SOURCE(e) ∈ (DESCENDANTS(σ) −
DESCENDANTS(c1))]). Such NLEs that transcend clone
boundaries have to handled carefully in order to (a) preserve
their original semantics and (b) allow the presence of clones
to be transparent to the non clone nodes. In order to achieve
this effect, we create special methods called NLE-Inheritors,
(N). These methods are simply conduits for the effects from
the cloned nodes to the non-clone nodes.

Algorithm 3 CLONE (τ ∈ Σ, υ ∈ D)

1: τ ⇐ DESCENDENTS(τ) − DESCENDENTS(υ)
2: υ ⇐ DESCENDENTS(υ)
3: φ ⇐ CREATECLONECONTAINER(υ)
4: for all { x | x ∈ υ } do

5: y ⇐ COPYNODE(x)
6: ADDNODE(φ, y)
7: for all { N | N ∈ NLES(υ) } do

8: if SOURCE(N) ∈ τ then

9: x ⇐ CREATEINHERITINGNODE()
10: ADDNODE(φ, x)
11: L ⇐ COPYNLE(N)
12: M ⇐ COPYNLE(N)
13: REPLACENODE(N , SINK(N), x)
14: REPLACENODE(L, SOURCE(L), x)
15: REPLACENODE(M , SOURCE(M), x)
16: y ⇐ FINDNODE(φ, SINK(M))
17: REPLACENODE(M , SINK(M), y)
18: else if SINK(N) ∈ τ then

19: {Similar to the source}
20: return φ

In addition to being used for load balancing, another advan-
tage of the cloning operator is that it can be used to increase
the robustness capacity of an agent by having multiple agents
work on the same task simultaneously. However, the details
are outside the scope of this paper.

These operators result in the rewriting of a local task structure.
In the case of agent spawning, the spawning agent, A, selects a
node, υ ∈ D for breakup, runs the breakup operator to divide its
local task structure into two parts, < σ1, σ2 >, and then spawns a
new agent, B, with σ2 as its local task structure.

For agent composition, on the other hand, composing agent, A
with a local task structure σ1, selects another agent, B with a local
task structure σ2, to compose with. Agent A then sends a message
to Agent B requesting composition. Agent B then call the merging
operator to merge σ1 and σ2 to form a single local task structure, σ.
Agent B can now be killed and the composition operation is now
compete.

4.3 Selecting a Spawning Strategy
To analyze the tradeoff between breakup and cloning, we com-

pared five spawning approaches:

1. Breakup: In this approach the task structure is always bro-
ken up into smaller subtasks as described in Section 4.2. We
used the Balancing Execution Time (BET) heuristic to select
the node to be allocated to the new agent, as defined in [8].

2. Prefer Breakup: This approach is the same as the Breakup
approach, with the exception that if Breakup is infeasible,
the Cloning approach (described below) is used. We de-
fine breakup as being infeasible if the local-task-structure of

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

834

the spawning agent consists of a single executable method.
(Formally, if σ is the root node (of the local task structure)
of the spawning agent, A, then feasible(Breakup(σ)) ⇔
|{x | x ∈DESCENDENTS(σ)∧x ∈ M}| > 1). This feasibility
condition exists because it makes no sense for A to spawn
off a new agent, B, and assign it the one and only executable
method that agent A was executing — effectively freeing up
A but creating a just as much overloaded agent, B.

3. Cloning: In this approach, the root of the task structure is
always cloned and assigned to the newly spawned agent. All
the agents in this approach are exact replicas in that all of
them have equivalent roles, in which they are responsible for
the complete task structure.

4. Prefer Cloning: This is similar to the Cloning approach,
with the exception that if Cloning is infeasible given the cur-
rent task load, the agent will Breakup according to the BET
heuristic. We define cloning to be infeasible if the num-
ber of clones of a node is greater than or equal to the num-
ber of outstanding tasks in the spawning agent’s task queue.
Cloning is infeasible in such cases because cloning assigns
task instances to specific clones (and by inference their own-
ing agents). The only way to assign a task instance to a new
clone, in such cases, would be to transfer an instance from
an existing clone to the new clone. This would free up the
existing clone but would equally overload the new clone.

5. Hybrid Model: This is a hybrid model, that we designed on
the basis of a preliminary set of experiments4. This model
uses a combination of cloning the highest level goal and
breakup according to the BET heuristics. It works by com-
puting a utility value UBreakup(ϑ), which is the expected utility
of breaking up according to the BET heuristics. Here, ϑ is
the node that was selected for breakup by the BET heuristic.
If UBreakup(ϑ) > χ, where χ is a constant called the breakup
threshold, the agent chooses to breakup. Otherwise it clones
the highest level node.

To compute UBreakup(ϑ), we start by initializing it to an-
other constant ψ. Then according to various “truisms” about
the current local-task-structure of the agent, the selected
breakup node and the environmental conditions, the value of
UBreakup(ϑ) is either increased or decreased according to the
formula: UBreakup(ϑ) = UBreakup(ϑ)(1 − (ξ ∗ var)), where
both ξ (a constant) and var have values between -1 and 1.
Both the value of ξ and var depend on the evidence being
considered. For our results, we have considered the follow-
ing parameters:

• The difference in execution time between the selected
breakup node and the leftover node as defined by the
BET heuristic. If this difference is large, the spawning
agent and the spawned agent will be unbalanced and
hence it makes sense to prefer cloning over breakup.

• The ratio of the number of NLEs that will have to
be “broken” up as a result of the breakup to the to-
tal number of NLEs in the task structure. The larger
the number of these NLEs, the greater the coordina-
tion cost between the spawning agent and the spawned
agent. Hence, it makes more sense to prefer cloning
over breakup in cases where there are a large number
of NLEs.

4Not reported here because of space constraints.

• The ratio of the difference in resource cost between
breakup and cloning divided by the total resource cost.
This ratio is used to tradeoff the increase in resource
cost when selecting cloning over breakup.

• The average amount of time available for each task in-
stance divided by the expected time needed for per-
forming the task. This is a measure of the excess load
in the system.

5. EVALUATION
We ran a series of experiments to compare our five agent spawn-

ing strategies. At the start of each experimental run, a random
TÆMS task structure with a maximum depth of 4 and maximum
branching factor of 4 was generated. The five strategies were then
run in parallel, on the same task structure while maintaining the
same exact environmental conditions (i.e. task arrival times, task
deadlines, random numbers, etc...) for all of them. Each experi-
ment was repeated 15 times with a new randomly generated task
structure for each repetition. The 15 repetitions of an experiment
form an experimental set.

Since the task structures are being randomly generated, two task
structures can have vastly varying characteristics (such as the max-
imum quality achievable, the minimum amount of time needed to
accrue positive quality, etc.) To allow experiments with vastly dif-
ferent task characteristics to be compared, we needed a unified way
of reasoning about such task characteristics. Towards this end, we
define three terms:

• The expected serial-execution-time (SET), is defined as the
minimum expected duration of time needed for a single agent
to perform a task on its own. Due to the presence of NLEs
such as facilitates and hinders, the SET is not simply the sum
of the expected durations of the executable methods of a task.
This is because the order in which the methods are executed
will affect the amount of time needed to perform a task. To
define our SET time, we need to order the methods so that
the complete execution run takes the minimum amount of
time possible. This can be done by performing a topological
sorting of all the executable methods, taking care to order
them so that each method would take the minimum amount
to time possible to execute.5.

• The expected parallel-execution-time (PET), is the minimum
expected amount of time needed to perform a task assuming
maximum parallelism, i.e. each agent is responsible for exe-
cuting a single method and all the agents can execute meth-
ods in parallel. Again computing the PET time is not simply
a matter of taking the maximum of the executable times of
the methods in a task.

• Finally, the sp-diff is defined as the difference between the
above two times, i.e. sp-diff = SET−PET.

To measure the performance of our strategies, we used the fol-
lowing input variables to control the task structures generated in an
experimental set:

1. The arrival sp-diff multiple, asp-diff, which is used to control
the task arrival rate (defined as the rate at which a new task
instance is generated). The arrival rate was set to asp-diff ∗
sp-diff. We set asp-diff to the following values: 0.01, 0.1, 0.5
and 1.0.

5The exact algorithm used to compute these times is beyond the
scope of this paper

Sachin Kamboj • Analyzing the Tradeoff s Between Breakup and Cloning in the Context of Organizational Self-Design

835

 1

 10

100

COMPLETED MESSAGES NO-AGENTS QUALITY RESOURCE-COST TURNAROUND

MODEL-BASEDCLONING
PREFER-CLONING

BREAKUP
PREFER-BREAKUP

Figure 2: Graph showing the number of times each strategy per-
formed the best or was in a group that performed statistically equiv-
alent to the best. The y-axis uses a logarithmic scale.

2. The deadline sp-diff multiple, dsp-diff, used to set the deadline
window, defined as the difference between the task deadline
and the arrival time. The deadline window for a task was set
to PET + dsp-diff * sp-diff. We used dsp-diff values ranging from
0.5 to 2.0 in increments of 0.5.

3. The probability of a MIN CAF was set to 0.1, 0.5 and 0.9.
The probability of a SUM CAF was also varied accordingly6.

4. The maximum number of NLEs ranged from 10 to 20.

We were interested in measuring the following performance cri-
teria:

1. The number of agents spawned by the organization.

2. The percentage of tasks completed, defined as the number of
tasks completed divided by the number of tasks generated.

3. The total number of messages sent by the agents in the orga-
nization.

4. The average quality accrued by the organization.

5. The total resource cost of the organization.

6. The average turnaround time of the tasks in the organization.
The turnaround time is defined as the time at which a task
was completed or failed minus the time at which the task
was generated.

Except for the percentage of tasks completed and the quality ac-
crued, lower numbers of the above criteria indicate better perfor-
mance. We ran a total of 96 experimental sets or 1440 experiments.
To test for statistically significant differences between the perfor-
mance of strategies, we ran the Wilcoxon Matched-Pair Signed-
Rank tests. Matched-Pair signifies that we are comparing the per-
formance of each system on precisely the same randomized task set
within each separate experimental set.

The results of these significance tests are shown in Figure 2. The
vertical bars show the number of times (out of 96, for the 96 ex-
perimental sets) that each strategy either performed the best or was
statistically equivalent to a strategy that performed the best.
6We did not consider MAX and EXACTLY_ONE CAFs for the pur-
poses of these experiments because some preliminary experiments
determined that they were not significant contributers to the perfor-
mance of the strategies

Note that this graph is a summary that shows the number of times
a strategy performs as well statistically as the best strategy. Given
no other information about the possible environmental conditions
at run-time, for a particular performance criteria, we would imple-
ment the strategy with the longest bar.

However, to understand the task and environmental conditions
that favor a particular spawning strategy, we have to look at the
performance of the strategies under different environmental condi-
tions. These performance results are shown in Figure 3. These two
graphs show the average number of agents and average percentage
of tasks completed for different values of asp-diff and dsp-diff.

Some interesting observations follow:

• From Fig. 2 we can see that the Breakup strategy performs
well and outperforms most of the other strategies in that it
either performs the best or performs statistically equivalent to
the best in the percentage of tasks completed, average quality
and total resource-cost criteria.

However, from Fig. 3, we can see that Breakup performs
poorly for extremely low values of asp-diff (i.e. 0.01), com-
pleting less than 25% of the tasks on average. This is be-
cause for such high values of asp-diff, the number of outstand-
ing tasks is so large that the agents have been maximally bro-
ken up. (That is, each agent is performing a single executable
method). Since further breakup is infeasible, the agent pop-
ulation is easily overwhelmed and, hence, performs poorly.

• As can be seen from Fig. 3, when dsp-diff ≤ 1, the Cloning
strategy performs significantly worse than than the other
strategies. This is because when the dsp-diff < 1, the dead-
line window is shorter than the SET, or the amount of time
needed by an agent to perform a task on its own7. As the
dsp-diff value increases beyond 1, Cloning performs as good
as if not better than other strategies.

• The Cloning strategy performed the best in the number of
agents spawned. This was expected because (a) Cloning
prefers to create “bigger”, yet fewer, agents to perform the
same task. The agents are fewer but have more responsibil-
ities; and (b) There were experiments in which the number
of agents that could be spawned by Cloning was limited to
the number of outstanding task instances (i.e. further cloning
was infeasible in such experiments.)

However, despite Cloning spawning a fewer number of
agents, Breakup outperforms Cloning in the total resource
cost metric. Again this reflects the fact that Cloning creates
fewer “bigger” agents that use more resources.

• The Prefer Breakup and Prefer Cloning strategies perform
almost as well as the Breakup and Cloning strategies respec-
tively under environmental conditions where Breakup and
Cloning are feasible and perform well. However, in situ-
ations where either Breakup or Cloning is infeasible, Pre-
fer Breakup and Prefer Cloning perform better than the ap-
proaches on which they are based. This is expected because
the Prefer strategies are the same as the non-Prefer strategies
under feasible conditions.

Finally we were very pleased and encouraged by the perfor-
mance of our Hybrid Model based strategy. As can be seen from
Fig. 2, our Hybrid Model performs statistically equivalent to the
7Note that the percentage of tasks completed is not 0 in such cases.
This is because of the presence of SUM CAFs in the task structure
which allow the organization to accrue some quality.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

836

20

30

40

50

60

70

80

90

100

0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2

0.01 0.1 0.5 1

1

10

7

5

4

3

2

100

70

50

40

30

20

1000

600

400

300

200

0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2

0.01 0.1 0.5 1

of Agents

Percent Tasks Completed

Prefer-Cloning

Prefer-Breakup

Model-Based

Cloning

Breakup

Figure 3: Graph showing the Number of agents (lower is better) and Percent Tasks Completed (higher is better). The x-axis shows the dsp-diff

values (the top numbers) within the outer asp-diff, values (the bottom numbers).

best strategy in 47 out of the 96 experimental sets (as opposed to
54/96 for the best strategy - Breakup.) Also, our Hybrid Model
performs as well as Breakup in conditions of low load (asp-diff ≥
0.5)and midway between Breakup and Cloning for situations where
asp-diff ≤ 0.1 and dsp-diff ≤ 0.5. In particular, for asp-diff = 0.01 and
dsp-diff ≤ 1, our Hybrid Model completes almost twice as many
tasks as Breakup, on average. Whereas Prefer Breakup performs
better than Hybrid Model under these conditions, the Hybrid Model
uses around one-seventh the number of agents. We strongly believe
that our hybrid model can be improved by using different values of
the constant and thresholds, something that we hope to investigate
in our future work.

6. CONCLUSION
In this paper, we have analyzed the tradeoffs between breakup

and cloning and have compared five strategies for picking between
the two approaches while spawning an agent. We have also devel-
oped a hybrid model that tries to incorporate the best of both the
two approaches.

In our future work, we would like to come up with an automated
way of learning the constants and parameters used in our hybrid
model.

7. REFERENCES
[1] K. S. Decker. Environment centered analysis and design of

coordination mechanisms. Ph.D. Thesis, Department of
Computer Science, University of Massachusetts, Amherst,
May 1995.

[2] K. S. Decker, K. P. Sycara, and M. Williamson. Cloning for
intelligent adaptive information agents. In Revised Papers
from the Second Australian Workshop on Distributed
Artificial Intelligence, number 3-540-63412-6, pages 63–75,
London, UK, 1997. Springer-Verlag.

[3] S. DeLoach, W. Oyenan, and E. Matson. A capabilities-based
model for adaptive organizations. Autonomous Agents and
Multi-Agent Systems, 16(1):13–56, 2008.

[4] S. S. Fatima and M. Wooldridge. Adaptive task resources
allocation in multi-agent systems. In AGENTS ’01, pages
537–544, New York, NY, USA, 2001. ACM Press.

[5] M. S. Fox. An organizational view of distributed systems.
IEEE Transactions on Systems, Man, and Cybernetics,
11(1):70–80, January 1981.

[6] L. Gasser and T. Ishida. A dynamic organizational
architecture for adaptive problem solving. In AAAI ’91,
pages 185–190, Menlo Park, California, 1991. AAAI Press.

[7] B. Horling, B. Benyo, and V. Lesser. Using self-diagnosis to
adapt organizational structures. In AGENTS ’01, pages
529–536, New York, NY, USA, 2001. ACM Press.

[8] S. Kamboj and K. S. Decker. Organizational self-design in
semi-dynamic environments. In AAMAS ’07, pages
1220–1227, May 2007.

[9] V. R. Lesser, et. al. Evolution of the GPGP/TÆMS
Domain-Independent Coordination Framework. Autonomous
Agents and Multi-Agent Systems, 9(1-2):87–143, 2004.

[10] R. Maheswaran, et. al. Predictability and criticality metrics
for coordination in complex environments. In AAMAS ’08,
pages 647–654, May 2008.

[11] J. G. March and H. A. Simon. Organizations. Blackwell
Publishers, 2nd edition edition, 1993.

[12] C. Martin and K. S. Barber. Adaptive decision-making
frameworks for dynamic multi-agent organizational change.
Autonomous Agents and Multi-Agent Systems,
13(3):391–428, 2006.

[13] O. Shehory, K. Sycara, et. al. Agent cloning: an approach to
agent mobility and resource allocation. IEEE
Communications Magazine, 36(7):58–67, 1998.

[14] R. G. Smith. The contract net protocol: High-level
communication and control in a distributed problem solver.
In Distributed Artificial Intelligence, pages 357–366, San
Francisco, CA, USA, 1988. Morgan Kaufmann.

[15] Y. So and E. H. Durfee. Designing tree-structured
organizations for computational agents. Computational and
Mathematical Organization Theory, 2(3):219–245,
September 1996.

[16] H. Zhang and V. Lesser. A dynamically formed hierarchical
agent organization for a distributed content sharing system.
In IAT ’04, pages 169–175, Beijing, September 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

